Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 10(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34371559

RESUMO

Soils and plant root rhizospheres have diverse microorganism profiles. Components of this naturally occurring microbiome, arbuscular mycorrhizal (AM) fungi and plant growth promoting rhizobacteria (PGPR), may be beneficial to plant growth. Supplementary application to host plants of AM fungi and PGPR either as single species or multiple species inoculants has the potential to enhance this symbiotic relationship further. Single species interactions have been described; the nature of multi-species tripartite relationships between AM fungi, PGPR and the host plant require further scrutiny. The impact of select Bacilli spp. rhizobacteria and the AM fungus Rhizophagus intraradices as both single and combined inoculations (PGPR[i] and AMF[i]) within field extracted arable soils of two tillage treatments, conventional soil inversion (CT) and zero tillage (ZT) at winter wheat growth stages GS30 and GS39 have been conducted. The naturally occurring soil borne species (PGPR[s] and AMF[s]) have been determined by qPCR analysis. Significant differences (p < 0.05) were evident between inocula treatments and the method of seedbed preparation. A positive impact on wheat plant growth was noted for B. amyloliquefaciens applied as both a single inoculant (PGPR[i]) and in combination with R. intraradices (PGPR[i] + AMF[i]); however, the two treatments did not differ significantly from each other. The findings are discussed in the context of the inocula applied and the naturally occurring soil borne PGPR[s] present in the field extracted soil under each method of tillage.

2.
Microorganisms ; 8(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207834

RESUMO

Arbuscular mycorrhizal (AM) fungi establish close interactions with host plants, an estimated 80% of vascular plant species. The host plant receives additional soil bound nutrients that would otherwise not be available. Other components of the microbiome, such as rhizobacteria, may influence interactions between AM fungi and the host plant. Within a commercial arable crop selected rhizobacteria in combination with AM fungi may benefit crop yields. The precise nature of interactions between rhizobacteria and AM fungi in a symbiotic relationship overall requires greater understanding. The present study aims to assess this relationship by quantifying: (1) AM fungal intracellular root structures (arbuscules) and soil glomalin as an indicator of AM fungal growth; and (2) root length and tiller number as a measure of crop growth, in response to inoculation with one of three species of Bacillus: B. amyloliquefaciences, B. pumilis, or B. subtilis. The influence of soil management, conventional (CT) or zero tillage (ZT) was a further variable evaluated. A significant (p < 0.0001) species-specific impact on the number of quantifiable AM fungal arbuscules was observed. The inoculation of winter wheat (Triticum aestivum) with B. amyloliquefaciences had a positive impact on AM fungal symbiosis, as indicated by an average of 3226 arbuscules per centimetre of root tissue. Bacillus subtilis increased root length significantly (p < 0.01) but decreased fungal symbiosis (p < 0.01). The inoculation of field soils altered the concentration of glomalin, an indicator of AM fungal growth, significantly (p < 0.00001) for each tillage treatment. The greatest increase was associated with B. amyloliquefaciences for both CT (p < 0.0001) and ZT (p < 0.00001). Bacillus subtilis reduced measured glomalin significantly in both tillage treatments (p < 0.0001 and p < 0.00001 for CT and ZT respectively). The interaction between rhizobacteria and AM fungi is variable, being beneficial or detrimental depending on species. This relationship was evident in both tillage treatments and has important implications for maximizing symbiosis in the crop plant-microbiome present in agricultural systems.

3.
Access Microbiol ; 2(2): acmi000083, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34568751

RESUMO

Arbuscular mycorrhizal (AM) fungi are one of the most common fungal organisms to exist in symbiosis with terrestrial plants, facilitating the growth and maintenance of arable crops. Wheat has been studied extensively for AM fungal symbiosis using the carcinogen trypan blue as the identifying stain for fungal components, namely arbuscles, vesicles and hyphal structures. The present study uses Sheaffer blue ink with a lower risk as an alternative to this carcinogenic stain. Justification for this is determined by stained wheat root sections (n=120), with statistically significant increases in the observed abundance of intracellular root cortical fungal structures stained with Sheaffer blue ink compared to trypan blue for both Zulu (P=0.003) and Siskin (P=0.0003) varieties of winter wheat. This new alternative combines an improved quantification of intracellular fungal components with a lower hazard risk at a lower cost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...